
Active Directory Certificate Services (ADCS)

A white paper by David Wozny for Oxford Computer Group

Table of Contents
Introduction..2

PKI Backgrounder ..2

Microsoft’s PKI History ..2

Objective ..3

Public Key Infrastructure ...4

Microsoft Certificate Services for Active Directory...4

Revocation Status and Providers ...6

Hardware Security Modules ..8

Summary ..9

Practical Applications of PKI .. 10

Introduction .. 10

Two Factor Strong Authentication ... 10

Encrypting File System .. 12

Glossary .. 15

Introduction

PKI Backgrounder
Public Key Infrastructure (PKI) is essentially concerned with harnessing the strength of cryptography

and wrapping it up into digital certificates which can be applied to a multitude of security enforcing

scenarios and applications. PKI usage generally follows the broad categories of Confidentiality,

Integrity and Authentication (CIA). Typical examples of security solutions which leverage PKI are:

 Persistent encryption of files at rest – for example with Encrypting File System (EFS) to ensure

confidentiality of data

 Digital signing of ActiveX browser controls, Java applets and Office macros to provide

assurance of the source and integrity of software code

 Smart card authentication to Windows, remote access gateways (such as VPNs)

As the ‘I in PKI’ implies, it is not a single entity, but a range of complimentary services such as

Certification Authorities (CAs), Registration Authorities (RAs), Validation Authorities (VAs), relying

parties, revocation providers and Hardware Security Modules (HSMs). This paper is not intended to

explore all of these services in detail, but rather to give a ‘useful general background’ for a rounded

understanding of the basics.

Although almost universally recognised as a comprehensive platform for delivering trust services, PKI

has suffered from bad press for being complex, unwieldy and process bound... and expensive. It’s fair

to say this has generally been the case; however, Microsoft’s entry into the market turned this around

in a lot of circumstances. Microsoft has made PKI a far more accessible and practical proposition for

many enterprises which may have been considering implementing PKI but were put off by the

aforementioned challenges.

Microsoft’s PKI History
Microsoft first dabbled in PKI on the Windows Server platform by providing a Certification Authority in

the Windows NT 4 Server option pack. Since then, Windows 2000 Server introduced a vastly improved

CA capability as a standard application service, much like adding DNS or IIS, although in terms of

flexibility, scalability and feature richness it still lagged significantly behind third party solutions. With

Windows Server 2003 Microsoft introduced the notion of the Enterprise CA and truly laid claim to

providing an enterprise class CA for all but the most demanding of scenarios. Windows Server 2008

sees further enhancements to ‘Microsoft PKI’, such as providing clustering capability, support for

advanced algorithms and better revocation services.

Support for enrolment of smart cards and general certificate management has largely been the domain

of third party specialist products. Windows Server does provide rudimentary web enrolment pages

for smart card issuance as well as scripted / auto-enrolment / MMC snap-in based certificate

enrolment for low assurance scenarios, however, these don’t tend to scale very well and lack

sophistication and extensibility. In 2005 matters changed when Microsoft purchased Canadian digital

identity specialist Alacris and their flagship idNexus product, a smart card and certificate lifecycle

management system tightly integrated with the Windows Server CA and Active Directory (AD). This

product was initially branded Certificate Lifecycle Manager (CLM), then Microsoft consumed it into

Identity Lifecycle Manager (ILM) in 2007. In time, it became ForeFront Identity Manager Certificate

Management (FIM-CM) and in the opinion of the author it has strong merits. Indeed the author has

implemented a FIM-CM solution which was used for smart card issuance in sixty countries – but it has

never really ‘taken off’ and is not considered in the remainder of this paper.

Objective
This paper explores many of the business drivers for Microsoft centric PKI services. It explores the

challenges and opportunities of implementing a PKI solution from the perspectives of design,

implementation, operations, etc.

Various scenarios are explored and particular emphasis laid upon practical, real world applications and

the supporting technologies which leverage PKI, rather than getting bogged down in the theoretical

and policy based aspects which often obstruct a rapid grasp of the subject.

A number of terms are used in this document which may not be understood by ‘non-PKI aware’

readers, it is suggested you have a brief review of the glossary before proceeding. Given the

sometimes complex and arcane nature of PKI, some poetic liberty has been taken to simplify

readability, hopefully without distorting the facts. It is fair to say that some topics have been treated

with brevity and rather simplistically; this is deliberate, as I have attempted to make this paper a

relatively easy read and hopefully conducive to better understanding.

Public Key Infrastructure

Microsoft Certificate Services for Active Directory

The Certification Authority

The central component of the Windows Server PKI platform is undoubtedly the Certification Authority

(CA) – Active Directory Certificate Services (ADCS). A CA loosely performs the following roles:

 Receives certificate requests from subscribers

 Identifies and validates aforementioned requests

 Issues certificates according to the PKI’s security policy,

 Publishes certificates to specified locations

 Archive a subscriber’s private key if suitably configured

 Revoke certificates deemed untrustworthy

 Create and publish Certificate Revocation Lists (CRLs)

 Logs certificate and CRL transactions to its database

The Case for the Offline Root CA

At the heart of PKI is the concept of a chain of trust, that is, an organisation puts a stake in the ground

and explicitly trusts a CA, this is referred to as the root CA. By explicit, what is meant is that the Root

CA’s certificate (which it issued to itself, i.e. self-signed), is installed into a particular certificate store

on every computer in an organisation and consequently every certificate issued by it or CAs which it

has subordinated (more of them later) is trusted. Or, it makes more sense inversely, any end entity

certificate presented to relying party must chain to a trusted Root CA. The concept of the chain of

trust is illustrated in Figure 1.

Note: It is perhaps worth mentioning the concept of explicitly trusted Root

CAs is not only relevant to private CAs (ones deployed in an enterprise)

but also to commercial CAs which we kind of explicitly trust; actually

Microsoft made the trust decision on our behalf. You can see this by

running the certmgr.msc1 or certlm.msc2 MMC snap-in and browsing

the Trusted Root CA container. In fact, whenever you access an SSL

protected web site with Internet Explorer, such as the payment pages on

www.amazon.com, the web server certificate used as part of the SSL

session establishment will have been issued by a CA in the list (or a CA

subordinate to one of the CAs in the list). If it wasn’t, your browser would

complain loudly!

Because of the trust asserted by use of digital certificates (as

we have just seen for example, we trust it to protect

payment credentials on the internet), it is necessary to

ensure the trust chain is suitably protected. And, as we all

know, the most secure box in the network is the box that isn’t

on the network! Essentially, Root CAs are deployed in an

entirely disconnected state, in the context of an enterprise

this generally means on a server built from ‘scratch’ with

Windows source media, into a workgroup and with Network

1 For ‘user’ based certificates
2 For ‘computer’ based certificates

“Offline” Root CA

Subscriber End
Entity Certificate

“Online” Issuing CA

Issuer: Root CA
Subject: Root CA

Issuer: Root CA
Subject: Issuing CA

Issuer: Issuing CA
Subject: Subscriber

Issues a CA
Certificate to...

Issues a CA
Certificate to...

Figure 1: PKI Trust Chain

Interface Cards (NICs) disabled, or preferably removed. Once commissioned, Root CAs have very little

operational role to play other than occasionally produce a CRL and their CA certificate generally has a

long validity period such as twenty years. So, apart from being a trust anchor, a Root CA is really quite

lazy and unsuited to churning out tens / hundreds / thousands pf certificates at subscribers’ behest, so

like all ‘big cheeses’, it delegates!

The Issuing CA

The process whereby a Root CA delegates certificate issuance to another CA is known as subordination;

the subordinated CA is generally referred to as an ‘Issuing CA’, in the context that it will be performing

the majority of certificate issuance in the enterprise - it is the ‘workhorse’ of the PKI.

The commissioning of an Issuing CA follows a sequence of operations whereby the Issuing CA generates

a CA certificate request (which contains its subject information and public key); this is generally

transferred onto removable media and taken to the Root CA. The Root CA certifies the Issuing CA by

taking the information in the certificate request and ‘wrapping it up’ into an x.509 v3 certificate which

it digitally signs using its own private key. It is the signature that ‘authorises’ the Issuing CA to issue

certificates which chain up to the Root CA.

Note: The Root CA’s private key is a security sensitive object and as we shall see, so is the Issuing CA’s private key likewise.

Compromise of a CA’s private key makes it relatively easy for a hostile party to impersonate the CA and fraudulently issue

certificates as that CA. It is the signature on a certificate that imparts the magic, unbreakable binding in PKI of a subject to

its public key, and it is the CA’s private key which performs the signing operation. CA private keys consequently need extra

special protection in the form of HSMs which will be described later.

On the Windows Server platform, a CA can be either a ‘standalone CA’ or an ‘enterprise CA’, the former

providing rudimentary CA services whereas the latter leverages AD to provide richer capabilities. This

section on Issuing CAs will concentrate on the enterprise CA capability (whereas a Root CA will almost

certainly be deployed in standalone CA mode).

Note: It is feasible to combine both the Root CA role and the Issuing CA role - typically referred to as an Enterprise Root CA.

An Enterprise Root CA is perhaps appropriate for a tactical solution or where high assurance in the PKI is not required.

Conversely, a PKI hierarchy is not limited to a simple two-tier approach; circumstances may dictate two offline tiers whereby

the ‘middle CA’ is known as an Intermediate (or Policy) CA. This approach is generally more suitable to extremely large and

sophisticated PKI implementations; this paper concentrates on the more common two-tier approach.

Figure 2 illustrates how an enterprise CA relies upon AD domain controllers to store objects; and

domain joined computers can leverage AD group policy to ‘automatically’ enrol for certificates.

One of the most important capabilities of

an enterprise CA is the use of certificate

templates as the basic definition for

certificates which an enterprise CA issues.

A certificate template has an Access

Control List (ACL) which defines what

entities can enrol for certificates; it also

contains extensions which effectively

determine to what purposes a certificate

can be used. Certificate templates also

describe how subject information is

retrieved and entered into a certificate, for

Enterprise Issuing CA

AD Domain Controllers

AD Domain

Configuration

CA Certificates

Certificate Templates

Certificate Revocation Lists

Services

Public Key Services

Figure 2: Enterprise CA

a web server certificate this may well be inserted manually during enrolment (www.my-domain-

name.com, etc.); or it might be automatically retrieved from AD, an example might be a subject’s

distinguished name, email name or User Principal Name (UPN). It shouldn’t be forgotten that the same

principal could be used when enrolling a computer for a certificate, in this circumstance the computer’s

DNS name might be the appropriate subject of the certificate.

Note: An enterprise CA can be deployed on either Windows Server Standard or Enterprise Edition. If deployed on Standard

Edition, a set of pre-defined certificate templates are introduced which cannot be modified, only their ACL can be changed.

On Windows Server Enterprise Edition, additional customisable certificate templates can be established and this is often a

very important capability. There are other distinctions when deploying an enterprise CA on the different Windows Server

editions, such as whether private key archival can be performed; data encryption use of PKI and the corresponding

requirement to archive private keys is discussed in the next chapter.

You might be a little interested in looking at one of these digital certificates, and I have included a

‘collage’ in Figure 3.

Figure 3: A Digital Certificate

We can see on the General tab some pertinent summary information, including the issuer (Go Daddy)

and subject (wozny.org). We can see the purposes to which the certificate can be used (proves your

identity to a remote computer). We couldn’t use this certificate to digitally sign mobile code or logon

to Windows as those purposes are not specified. Certificates are time bounded, and here we can see

its validity period expires in October 2018.

The Details tab includes all of the Fields (attributes / extensions) in the certificate; it should be noted

that the subscribers’ public key exists as an extension (as can be seen).

Finally, on the Certification Path tab we can observe the chain of trust: the bottom leaf represents the

author’s certificate, which was issued by the Go Daddy Secure Certificate Authority, which in turn was

subordinated by the Go Daddy Root Certificate Authority.

Revocation Status and Providers
So, we’ve established a CA hierarchy and issued a certificate... but what if that certificate becomes

compromised; actually it’s the private key corresponding to the certificate which we’re actually

concerned with – but we’ll consider the term ‘certificate’ for simplicity. Perhaps the certificate is on a

smart card that has been stolen or eaten by a dog, or maybe it’s on a computer where malware has

been discovered that could potentially employ the certificate for malicious purposes.

A mechanism is needed to inform a relying party (let’s say an AD domain controller during a smart card

based login) to consult with an authoritative source of a user’s certificate ‘status’ before deciding

whether it considers the certificate legitimate. One of the operations of a Certification Authority is to

publish a list of time valid certificates which are deemed untrustworthy (revoked). This is typically

achieved using an item referred to as a Certificate Revocation List (CRL); this is simply a file that

contains a list of serial numbers of revoked certificates and perhaps a reason for revocation. CRLs are

published on a regular basis by CAs - which also digitally sign CRLs to ensure their integrity. The precise

publication interval is often a very delicate design decision due to conflicting requirements - as will be

seen.

Note: CRLs are only concerned with time valid certificates because an out-of-date certificate would fail on a time validity

check anyway, and hence listing on a CRL would be redundant. Indeed, certificates which are listed on a CRL which then

expire are automatically purged from the CRL.

So how does a relying party know where to retrieve a CRL from when validating a certificate presented

to it? The answer is: another one of those extensions we saw in the Details tab of an issued certificate,

known as a CRL Distribution Point (CDP) which contains a list of Universal Resource Locations (URLs).

Remember, the CRL is simply a file and it makes sense to publish it to a highly available, and possibly

distributed location; almost certainly never the CA itself.

Note: Root CAs also must publish CRLs (which are copied onto removable media and transferred to the CDPs), pertaining to

the subordinate CA certificate issued to issuing CAs. Root CA CRL publication is performed on an infrequent basis, such as

annually, and not considered further in this document.

Figure 4 shows a CRL being published by an Enterprise CA to both HTTP and LDAP CDPs (A). An AD

domain controller retrieves a CRL from one of the CDPs (B) after being presented with a certificate

during a smart card based logon authentication (C).

Enterprise Issuing CA

LDAP CDP
(AD DCs)

HTTP CDP
(Web Farm)

User

A

A

C

AD DC
(Relying Party)

B

Figure 4: Revocation Providers

When a relying party inspects a certificate presented to it, it will extract the ordered list of CDPs and

attempt to retrieve a CRL so that it can determine whether the certificate has been revoked.

Note: If a relying party cannot retrieve a CRL from the list of CDPs, or the CRL is stale, i.e. it has expired, the default behaviour

is to reject the certificate (fail safe). Just like a certificate, a CRL has a finite lifetime.

A CDP extension may contain information similar to that shown here (liberty has been taken with the

LDAP CDP for the purpose of simplicity):

1. http://pki.my-domain-name.local/crl/My Issuing CA.crl

2. ldap:///CN=My Issuing CA,CN=CDP,CN=Public Key Services,DC=MyDomain,DC=local

The HTTP CDP is a useful first CDP because it is a ‘universally recognised’ protocol, often accessible

externally in the event that certificates are being used across public networks. It should be noted that

publication of CRLs from an Issuing CA to an HTTP CDP will usually involve an ‘out-of-band’ mechanism

such as the RoboCopy file transfer tool. The LDAP CDP is useful because an organisation’s AD can be

leveraged to provide a highly distributed resource, however, this isn’t so accessible externally and the

LDAP:/// syntax used by AD is not universally recognised.

Note: As mentioned previously, the validity period of a CRL is often a sensitive design matter. Balancing the demand for up-

to-date revocation status against the availability concern of a CA failure and non-publication of fresh CRLs causing certificates

to be rejected by relying parties is a classic PKI dilemma. Added to the conundrum is the fact that some relying parties cache

CRLs during their authoritative period (lifetime) and won’t try to retrieve a CRL from a CDP if it has a cached CRL with

outstanding validity period. Best practice for CRLs is too wide a subject to consider here, but rest assured they will certainly

be a matter of great deliberation, and compromise!

Hardware Security Modules
One of the components of your PKI you won’t be buying from Microsoft are HSMs; there are many

vendors and form factors of HSMs. Vendors include Thales (nCipher), Gemalto (SafeNet) and AEP;

whereas form factors include PCI cards, USB attached modules and network attached modules.

HSMs are employed to secure a CA’s private key material (be it Root or Issuing) by implementing

physical and logical controls. CA private keys are only ever accessed (generally for signing operations)

within the confines of the HSM. The HSM is a ‘cryptographically secure’ tamper proof and tamper

evident device. Logical controls tend to require a nuclear launch code approach, whereby multiple

people need to present a token (and corresponding PIN) to perform a particular function at the HSM.

By way of example, Thales HSM’s fundamental logical control (the Security World) and associated

tokens are illustrated in Figure 5 - most HSM vendors have a similar approach.

My Org Security World
Administrator Card Set

K=3, N=8

My Root CA
Operator Card Set

K=2, N=5

My Issuing CA
Operator Card Set

K=1, N=3

Figure 5: Thales HSM Logical Controls

In the circumstance illustrated above there is an Administrator Card Set (ACS) which typically governs

management functions for all of the HSMs in a deployment and have identified a total of eight

individuals (N) with key management responsibility. Three ACS cards (K) need to ‘come together’ to

effect a task. The term ‘K of N’ is often used, whereby K is the quorum and N is the total number (of

cards). Management tasks might be reloading key material into a replacement HSMs following a

failure, or deploying further HSMs for high availability purposes. It should be noted that having a single

Security World including all CA servers in a PKI implementation is a design decision, this approach is

not mandatory.

The operator card set is used to authorise operational tasks, such as the activation of the CA’s private

key when the CA service is started. For the Root CA we have designated here that a quorum of two

card holders must be present to perform this task, whereas for the Issuing CA only one card holder

needs to be present. This approach might result in an ‘operational constraint’ in a situation whereby

the Issuing CA is deployed in a lights-out data centre scenario and a power failure causes a reboot of

the Issuing CA - approaches to mitigate this risk are not covered in this paper.

Summary
We’ve covered off the PKI fundamentals and implemented a CA hierarchy and supporting PKI

elements, so what...?

Practical Applications of PKI

Introduction
As we have learned, PKI can generally be applied to meet the following security paradigms:

Confidentiality, Integrity and Authentication. You’ll often also see non-repudiation referred to in

addition to CIA, though this is generally more about policy to provide assurance of CIA in the context

of a legal framework and therefore not addressed separately here.

Some practical applications of PKI include the following:

 Signing email (integrity and authentication)

 Encrypting email (confidentiality)

 Code signing (integrity and authentication)

 Web server (authentication and confidentiality)

 Virtual private network (authentication)

 Wireless network (authentication)

This chapter will address typical PKI usage incorporating the authentication and confidentiality

paradigms - to give an appreciation of the practical issues and benefits, rather than a purist /

theoretical approach.

Two Factor Strong Authentication

Introduction

Probably the most common implementation of ADCS is to support smart card logon to Windows. In

this scenario, when your domain joined computer starts up, instead of pressing CTRL+ALT-DEL and

entering a user account and password, a smart card is inserted into a smart card reader the smart card

PIN is entered when prompted.

It can be seen in Figure 6 (top), that when a smart

card reader is attached to a workstation the GINA

(logon prompt) changes to include a smart card

graphic and new text. In Figure 6 (bottom) the

result of having inserted a smart card inserted into

a smart card reader is displayed.

Note: There is no requirement to enter a login ID when

performing a smart card based login to Windows, the UPN is

read from an extension in the digital certificate on the smart

card and this is what is presented to the AD domain controller

authenticating a user.

Perhaps it is worthwhile to expand on just what is

going on, and what the two factors are. The smart

card is not a factor, neither is the certificate. The

something you have is a private key (associated with the certificate) stored on a smart card; the

something you know is the PIN, this is required for your computer to be able to unlock the container

on the smart card where the private key is securely stored.

Figure 6: Smart Card Logon Prompt

Note: It’s not mandatory to implement a ‘Microsoft CA’ for issuing smart card logon certificates, third party CA solutions and

managed PKI services can achieve the same end.

Native Support

One of the most important aspects of the smart card based two-factor authentication to Windows

solution is that it is natively supported and integrated with Kerberos. The process of a Kerberos Key

Distribution Centre (KDC) running on an authenticating AD domain controller granting a Kerberos

Ticket Granting Ticket (TGT) still applies. The only change is the matter of the password based

authentication being substituted by use of cryptographic principals (public and private keys).

Third party 2FA solutions do exist for logging on to Windows but they generally exhibit the following

deficiencies:

 The authentication is not Kerberos integrated, often resulting in AD DCs having to consult

RADIUS servers upon which the third party solution integrates; this can be a scalability,

performance and availability constraint

 A requirement to often implement GINA replacements (shims)

Enforcement

It is useful to know that implementing smart card based authentication doesn’t automatically mean

that it is enforced, that is a separate matter. Enforcement can be applied to computers by AD group

policy, such that all computers governed by a GPO require a smart card based logon. More likely,

smart card logon will be enforced for a user (this cannot be done by group policy) by a setting on their

user account, see Figure 7.

It should be noted that enforcing smart card based logon

randomises the password associated with the user account,

hence, username and password type logins are no longer

possible.

Some of the challenges presented by enforcing smart card

logon are for authenticating Remote Desktop Protocol (RDP)

sessions, executing runas commands to run a session with

elevated privileges and net use commands. It may be

expected that these capabilities require a username and

password… but they don’t. Authentication can be re-directed

to a smart card, followed by entry of the corresponding PIN.

Other AD settings applicable to smart card use include removal behaviour. Options available are that

removal of the smart card from the smart card reader will do nothing (weak), lock the workstation

(good) or logoff the workstation (drastic).

Remote Access Gateway Authentication

Although a smart card might be issued primarily for Windows logon, it might also be leveraged for

strong authentication to remote access gateways, such as VPN concentrators. Most VPN solution

providers have integrated support for this approach, including Microsoft Forefront TMG, CheckPoint

VPN-1 and Cisco ACE, etc. These approaches generally leverage the same smart card and certificate,

resulting in a smoother experience for the user. Going even further, integration of physical access

proximity devices in smart card bodies for building access, etc. makes the one card utopia a possibility.

Figure 7: Smart Card Logon Enforcement

Encrypting File System

Introduction

EFS provides a method to encrypt files on a local, NTFS formatted file system in Windows 2000 and

later operating systems. It is possible to specify files, or more likely a folder into which stored files are

earmark to be encrypted. Files saved in the marked folder are automatically encrypted and decrypted

on access - the underlying ‘mechanics’ are entirely transparent to the user.

Note: Even though the folder is marked for encryption, it isn’t really; it’s just an indicator that any documents placed in the

folder will be encrypted, file by file.

You may think you’re able to use EFS without any PKI since even a Windows XP computer configured

in a workgroup can do EFS, and you’d be right... sort of. There’s no disputing that EFS does work in

this scenario, where your computer goes ahead and creates a self-signed certificate just for this

purpose. However, this leads us to the danger apparent in any solution where data encryption is

performed... is there a suitable mechanism to recover decryption keys in the event of a ‘disaster’? A

disaster in this context could be something as seemingly innocuous as a deleted user profile in

Windows. As we will see, implementing EFS without suitable recovery measures is akin to feeding your

documents into the corporate shredder.

EFS Principals

Figure 8 (top) illustrates the

fundamental principal of EFS

encryption. (1) When a file is

earmarked for EFS (or placed into

an ‘EFS marked folder’) a symmetric

File Encryption Key (FEK) is

established and the previously clear

text contents of the file encrypted

(2) with this FEK. (3) The user’s EFS

certificate is used to encrypt the

FEK and the encrypted FEK is placed

in the document Data Decryption

Field or DDF (4).

Figure 8 (bottom) illustrates the

fundamental principal of EFS

decryption. On access, the

encrypted FEK is retrieved from the

document’s DDF (1). The user’s EFS

private key (2) is used to decrypt the

FEK and finally the FEK is used to decrypt the body of the document. It should be remembered that all

of this is happening under the covers, transparent to the user.

Note: Windows XP SP1 and above use a FEK based upon the AES algorithm with a 256-bit key length

EFS Certificate Enrolment

EFS certificates will generally be enrolled using auto-enrolment capability, in this way enrolment is

seamless to the user – they just get an EFS certificate. The benefits of this approach are clear, though

Encrypted
Contents

 DDF

EFS Public
Key

Clear Text

2

43

1

FEK

FEK

Clear TextEFS Private
Key

2

Encrypted
Contents

3

 DDF1

FEK

FEK

Figure 8: Encrypting File System

it might be problematic for users who roam to different machines as they could potentially get auto-

enrolled for new EFS certificates at each machine they roam to. One possible means to overcome this

problem is credential roaming – by using this technology the user’s certificate and key material is

stored in their AD account and roams with them wherever they go and available wherever they need

them.

Note: It is important if you intend to use EFS that you automatically enrol users for EFS certificates, or at least make it seamless

to the user when they first attempt to encrypt a file that an EFS certificate is transparently enrolled for. If a user attempts to

encrypt a file and doesn’t have a valid EFS certificate, Windows would typically generate a self-signed certificate to perform

the encryption. This is a very dangerous scenario, as this certificate would be ‘un-managed’ and therefore if lost (actually the

decryption private key) would result in the data being ‘shredded’. It is sensible that until a roper infrastructure is in place to

manage EFS, the ability to encrypt files is disabled by group policy.

Another important consideration is users should be relied upon to select folders for encryption (a big

risk) or whether it is preferable to use group policy to restrict the folders to which a user can save data

and ensure that these folders are flagged for EFS. This way, there’s more assurance that data which

users save on their local file system is encrypted.

Private Key Archival

In the majority of scenarios where certificates are used for persistent data encryption (such as EFS), it

would be expected that an archive of the private (decryption) key is required. An enterprise CA

facilitates key archival effortlessly, by defining within the certificate template that the private key

should be archived. Recovery of private keys from the CA is a split-role process, requiring participation

of a certificate manager and a key recovery agent.

Additionally, EFS has a mechanism that doesn’t rely upon key archival at the CA, called EFS data

recovery. In this approach, EFS recovery agents are established, and referenced in AD group policy. If

any EFS encrypted data needs to be recovered, it would be taken to a workstation where an EFS

recovery agent is installed and can subsequently decrypt the data.

With EFS, it is possible to take either approach to security private key material, or perhaps even both!

The pros and cons of each approach would need to be explored in greater detail to make an informed

design decision.

Note: Even though PKI certificates are used as part of the establishment of an encrypted channel between a web site and a

user’s browser, this data is only encrypted transiently and therefore there is not necessarily a requirement to archive private

keys associated with a Web server’s SSL certificate.

EFS in Context

So, in which circumstances might it be attractive to implement EFS? The ‘nutshell answer’ is where

there is a need for a user to ensure confidentiality of data that he/she works with such that no-one

else can access that data. Ordinarily this would be for data that is stored on the user’s hard disk drive

or possibly USB attached storage device (though this would have to be formatted with NTFS).

Note: It is possible for a user to grant access on a file-by-file basis to another user, providing they possess an EFS certificate

of their own.

So, does EFS provide the answers to all your confidentiality requirements? Probably not, EFS would

generally form part of a range of measures to meet security requirements.

 Can EFS be used to protect all data on your local system? Not really, full volume encryption

solutions such as BitLocker may be more appropriate.

 Can EFS be used to protect files as they distributed to various publication locations or

transported around on removable media? Not really, Rights Management Services (RMS)

might be a better fit.

 Can EFS be used to protect files on network shares? With some trickery, yes. Though again,

the RMS approach might be more suitable here.

Does all this mean that EFS has some limits to its applicability? Absolutely. But, it also has extremely

strong capabilities and can be a significant component of your security policy – I just want to ensure

you’re aware that EFS doesn’t solve all confidentiality requirements.

Glossary

CA A Certification Authority is a service which receives requests for
certificates (incorporating a subscriber’s subject information and
public key) and manufactures a digital certificate (x509 v3)
incorporating aforementioned attributes

CRL Certificate Revocation Lists are monolithic objects published (and
digitally signed) by CAs containing the serial numbers of
certificates designated as untrustworthy; they are retrieved by a
relying party from a revocation provider when a certificate is
being validated

CSP A Cryptographic Service Provider is a software library that
implements the Microsoft Cryptographic API, generally, smart
cards have a specific CSP. The Smart Card Base CSP model, means
that specific manufacturer CSPs are becoming redundant.

HSM A Hardware Security Module is a device which protects sensitive
cryptographic material in a physically and logically secure
environment; typically implemented in a PCI form factor device

KSP The Key Storage Provider, which supplanted the CSP in the ‘Vista
timeframe’.

OCSP Online Certificate Status Protocol is a bandwidth effective method
for relying parties to establish revocation status, whereby the
serial number of a certificate being validated is submitted to an
OCSP ‘responder’ which returns a digitally signed response: either
positive or negative. OCSP is also often used to overcome latency
issues associated with CRLs

RA A Registration Authority is a service which brokers requests on
behalf of a CA, generally handling workflows such as enrolment,
renewal, termination etc.; often combined with a smart card
management capability

Relying Party An entity which makes a decision /action based upon the validity
of a digital certificate presented to it (e.g. a domain controller is a
relying party in the context of a smart card logon)

Revocation Provider An entity which provides revocation services to a relying party,
typically this could be an LDAP or HTTP based service hosting
certificate revocation status data

Subscriber An entity (could be a user, service or a computer) which enrols for
a digital certificate; its identity is attested by the binding of its
public key and subject information in a digital certificate issued by
a Certification Authority trusted either explicitly or implicitly by
any relying parties

