STAFFORDSHIRE POLYTECHNIC DEPARTMENT OF MECHANICAL AND COMPUTER AIDED ENGINEERING

Session 1989/90

BEng(HONS) DEGREE IN MECHANICAL ENGINEERING BEng(HONS) DEGREE IN COMPUTER AIDED ENGINEERING

Electrical Engineering BM1C/M

Date: Thursday, 21st June 1990 Time: 9.30am - 12.30pm

Examiner: C.J. Boycott Time Allowed: 3 hours

This paper contains 8 questions; each of which carries equal marks. Students should present solutions to any 5 questions.

Formulae sheets are attached. Students may use any formula without proof unless specifically requested for a proof in a question.

- Find the voltage VAC for the circuit shown in Fig. Q1a. (6 marks)
 - Find the mean and Rms values of the waveform shown in b) (6 marks) Fig. Q1b.
 - When R (of Fig. Q1c) is 2Ω the ammeter reads 0.5A. c) What will the ammeter read when R is 0.56Ω ?

(8 marks)

- For the circuit shown in Fig. Q2a write down BUT DO NOT SOLVE:
 - the mesh equations using the loop currents shown.
 - ii) the node equations taking 0 as the reference node.

(10 marks)

b) For the circuit shown in Fig. Q2b find VA0 and I.

(10 marks)

State Thevenins theorem. a)

(5 marks)

- Given that the Thevenin equivalent circuit of a network b) is as shown in Fig. Q3 deduce the Norton equivalent circuit. (3 marks)
- A network of impedances and sources of alternating c) emf has two terminals. The open circuit voltage at the terminals is 260V and the short circuit current is 20A.

When a coil of 11Ω reactance and negligible resistance is connected across the terminals 13A flows in the coil. Find the circuit impedance behind the terminals in the form $(R \pm jX)\Omega$. (12 marks) 4 a) Show from first principles that the energy stored in a capacitor C is given by 1/2 CV², where V is the final voltage across the capacitor. Assume the capacitor is initially uncharged.

(5 marks)

- b) Define time constant for a series CR circuit.
- (3 marks)
- c) A $100\mu F$ capacitor is charged through a 500Ω resistor from a 1kV dc supply. How long does it take for the capacitor to:
 - i) reach 50% of its final charge
 - ii) reach 50% of its final stored energy

Assume the capacitor is initially uncharged.

(12 marks)

- 5 a) If the supply voltage V = (200 +j30) volts and the supply current I = (5-j2) amps, find the power and power factor of the circuit. (7 marks)
 - b) Working from first principles show that the resonant frequency of the circuit shown in Fig. Q5a is:

$$f = \frac{1}{2\pi\sqrt{LC}}$$
 (4 marks)

- c) For the circuit shown in Fig. Q5b find:
 - i) C to give resonance
 - ii) VC at resonance
 - iii) Circuit Q factor

(9 marks)

- a) 3 identical 30Ω resistors are connected in delta to a 415V
 3-phase 50Hz supply. Find the total power dissipated.
 Find also the total power dissipated when one resistor goes open circuit. (7 marks)
 - b) Find the current in the neutral wire, of the circuit shown in Fig. Q6, if the balanced 3-phase supply has a phase voltage of 100V. Assume RYB phase rotation and take V_{RN} as reference. (13 marks)
- 7 a) Working from first principles show that the Emf equation of a transformer is given by:

 $E = 4.44fN\phi_{max}$

where f = supply frequency (Hz)

N = number of turns

 $\phi_{max} = maximum core flux (Wb)$

(5 marks)

Q7 continued overleaf......

b) A single phase transformer takes 1A in the primary, at a power factor of 0.4 lag, when on no-load, with a primary supply of 200V. If a load of 50A at a power factor of 0.8 lag is now taken from the secondary, find the total primary current and power factor.

Transformer turns ratio $\frac{N_1}{N_2} = 2$ (9 marks)

- c) i) Explain why the core of a transformer is laminated.
 - ii) Explain why the cross sectional area of a transformer core is stepped, rather than circular or rectangular. (6 marks)
- 8 a) Working from first principles show that the Emf and torque equations of a dc motor are given by $E = K\phi\omega$ and $T = K\phi I_a$.

where ϕ = mean flux per pole (Wb) ω = speed of rotation (rad/sec) I_a = armature current (amps). (8 marks)

- b) A 250V dc shunt motor takes 80A and runs at 600 rev/min. $R_f = 50\Omega \text{ and } R_a = 0.1\Omega.$ Iron, friction and windage losses are 2.2kW. Find i) nett output power
 - ii) efficiency
 iii) nett torque

(8 marks)

c) Explain why it is necessary to have a resistor in series with the armature during starting. (4 marks)

Formulae Sheet (for BM1 Electrical Engineering)

Impedances in series $Z = Z_1 + Z_2 + Z_3 + \dots$

Impedances in parallel $\frac{1}{Z} = \frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3} + \dots$

For a function y = f(x)

Mean = $\frac{\text{Area under curve of } f(x) \text{ in 1 repetition}}{\text{Base length of 1 repetition}}$

Rms = $\frac{\text{Area under curve of } f(x)^2 \text{ in 1 repetition}}{\text{Base length of 1 repetition}}$

For a pure inductor $v = \frac{Ldi}{dt}$

For a pure capacitor q = Cv or $\frac{dq}{dt} = i = \frac{Cdv}{dt}$

For sinusoidal supplies

$$|X_{L}| = 2\pi \text{ fL and } |X_{c}| = \frac{1}{2\pi fC}$$

$$|X_{L}| = +j |X_{L}| \qquad X_{c} = \frac{1}{j |X_{c}|} = \frac{-j}{|X_{c}|}$$

$$|Z| = \sqrt{R^{2} + (X_{L} - X_{c})^{2}}, \ Z = R + j(X_{L} - X_{c}) = R \pm jX$$

$$|Y| = \frac{1}{2} = G \pm jB$$

For single phase circuits

Power =
$$|V|| I |\cos \phi$$
 $VAR = |V|| I |\sin \phi$ $VA = |V|| I |$

where ϕ is the angle betwen V & I

If V & I are in complex form then

Power = Real VI* where I* is the complex conjugate of I. Volt Amperes = Imaginary VI*.

For a balanced 3 phase circuit

Power =
$$\sqrt{3} | V_L || I_L | \cos \varphi$$

$$VA = \sqrt{3} |V_L| |I_L|$$
 $VAR = \sqrt{3} |V_L| |I_L| \sin \phi$

$$VAR = \sqrt{3} |V_L| |I_L| \sin \phi$$

$$I_L = \sqrt{3} I_P$$

$$V_L = V_p$$

$$V_L = \sqrt{3} V_p$$

$$I_L = I_p$$

Series and Parallel resonance - implies that the circuit power factor is unity.

For a series circuit, Q factor =

Voltage across C (or L) at resonance
Supply voltage

For a CR series circuit with a dc supply.

$$v_c = V(1 - \exp(-t/RC))$$

 $i = \frac{V}{R} \exp(\frac{-t}{RC})$

when charging C

For an LR series circuit with a dc supply.

$$v_L = V \exp\left(\frac{-Rt}{L}\right)$$

$$i = \frac{V}{R} \left(1 - \exp\left(\frac{-Rt}{L}\right)\right)$$
 when current is rising

For a transformer

$$E = 4.44 \text{ fN}\phi_{\text{max}}$$
 $\frac{V_1}{V_2} = \frac{N_1}{N_2} = \frac{I_2}{I_1'}$

For a dc motor

$$E = \frac{P\phi\omega Z}{2\pi a}$$
, $E = K\phi\omega$, $T = K\phi I_a$